投稿须知
  《光谱学与光谱分析》(国际标准刊号:ISSN 1000-0593, CODEN码:GYGFED, 国内统一刊号:CN 11-2200/O4)是中国科学技术协会主管,中国光学学会主办,由钢铁研究总院、中国科学院物理研究所、北京大学、清华大学共同承办的专业性学术刊物,主要报道我国光谱学与光谱分析学科具有创新性的研究成果,反映国内外光谱 ...

光谱数据融合对绒柄牛肝菌产地溯源研究

作者: 张钰 [1] 李杰庆 [2] 李涛 [3] 刘鸿高 [2] 王元忠 [4]

关键词: 产地溯源 数据融合 绒柄牛肝菌 紫外-可见吸收光谱 傅里叶变换红外光谱

摘要:由于国内外食品市场准入制度和溯源体系不完善,销售商乱用虚假标签等现象的发生,使得食品安全形势愈发严峻.为了保障野生食用菌的安全性,保护云南高原特色农业品牌战略,亟需建立快速准确的产地溯源方法.通过采集云南及其周边8个产地、79个绒柄牛肝菌子实体的紫外-可见吸收光谱(UV-Vis)与傅里叶变换红外光谱(FTIR),采用多元散射校正(MSC)、标准正态变换(SNV)、二阶导数(2D)、平滑(SG)等算法对原始光谱进行预处理.基于低级与中级数据融合策略,将预处理后的U V-Vis与FT IR光谱信息进行融合,结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM),建立牛肝菌产地鉴别模型,确定最佳产地溯源方法.对光谱融合数据进行系统聚类分析(HCA),探讨不同产地样品整体化学信息的差异性与相关性.结果显示:(1)采用MSC+2D和SNV+2D对UV-Vis与FTIR光谱进行预处理,R2 Y与Q2最大,分别为61.58%,95.09% 和50.85%,82.16%,表明MSC+2D与SNV+2D为UV-Vis与FTIR光谱的最佳预处理方法;(2)基于UV-Vis,FTIR,低级与中级数据融合建立的PLS-DA与SVM模型,样品分类错误总数分别为24,6,2,2和6,1,1,0,表明数据融合模型分类效果优于单一UV-Vis与FTIR模型;(3)中级数据融合模型中,SVM对所有样品的分类全部正确,PLS-DA的分类错误总数为2,表明基于SVM的中级数据融合策略分类效果优于PLS-DA;(4)低级和中级数据融合HCA模型,分别有4和1个样品不能与同一类区域样品聚为一类,表明中级数据融合优于低级数据融合;由中级数据融合HCA图可知,同一产地样品聚类距离小于不同产地之间聚类距离,表明同一产地样品整体化学成分类较相似,且同一产地不同采集地点的差异小于不同产地之间的差异.采用UV-Vis与FTIR光谱中级数据融合策略结合SVM,能够对不同产地来源牛肝菌样品进行准确鉴别,为野生食用菌产地溯源研究提供一种新方法.


上一篇: 黄河口海域悬浮物浓度Landsat8 OLI分段线性反演
下一篇: 利用叶片正反面反射光谱估算叶绿素含量

Copyright@2003 China Physical Science & Technology All Rights Reserved
中国物理学会 版权所有 2013 京ICP备05002789号